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SUMMARY 
Buoyancy-driven instability of a monocomponent or binary fluid which is completely contained in a vertical 
circular cylinder is investigated, including the influence of the Soret effect for the binary mixture. The 
Boussinesq approximation is used, and the resulting linear stability problem is solved using Galerkin's 
technique. The analysis considers various types of fluid mixtures, ranging from gases to liquid metals, in 
cylinders with a variety of radius-to-height ratios. The flow structure is found to depend strongly on both the 
cylinder aspect ratio and the magnitude of the Soret effect. Comparisons are made with experiments and 
other theories, and the predicted stability limits are shown to agree closely with observations. 
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1.  INTRODUCTION 

Buoyancy-driven instability of a quiescent, horizontal monocomponent layer of fluid heated from 
below in the presence of a gravitational field has been the subject of many previous investigations. 
These experimental and theoretical studies encompass both layers of infinite as well as finite 
lateral extent, although studies of the former are much more numerous. It is well known that 
when the imposed temperature gradient leads to a sufficiently large unstable density gradient, 
characterized by a certain critical value of the Rayleigh number, flow and structure ensue. The 
original variants of the problem with thermally induced density stratification have since been 
complemented by the inclusion of double-diffusive effects, so that concentration as well as 
temperature fields can play a major role. The latter demonstrated the occurrence of an instability 
whose mechanism relied on the differences in relaxation times between the temperature and 
concentration fields.' - 3  In such multifield systems there is also the possibility of additional 
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coupling through the Soret and Dufour effects, alias thermal diffusion effect and the diffusion- 
thermo effect res~ectively.~ One focus of the present study is the effect of such coupling on the 
stability of a vertical, bounded cylindrical layer of a binary mixture. The stability of such systems 
can be adversely affected by the Soret effect, i.e. mass transfer driven by a temperature gradient, if 
the heavier species tends to move towards the cold region, producing an adverse contribution to 
the density gradient when heating is from below. In some cases a substantial decrease in the 
stability of the system is realized. 

Despite the potential importance of the Soret effect in certain systems, both the Soret and 
Dufour effects were ignored compared to ordinary diffusion and conduction respectively until the 
importance of double-diflusioe effects was recognized. Then, both experimental (e.g. References 
5-12) and theoretical (e.g. References 13-16) studies established the importance of the Soret effect 
in many systems, either as a primary mechanism leading to instability and subsequent flow, or as 
the mechanism which generates a precursor disturbance to trigger a flow in which it plays a minor 
role.17 Recent interest in the Soret effect has also been stimulated by the growing possibility of 
conducting materials science experiments and physical property measurements in a low-gravity 
environment, i.e. crystal growth from solution or vapour phase deposition on Skylab” or space 
shuttle missions, or accurate measurements of Soret coefficients.” In exploring the latter, Bataille 
et a/.” conducted a linear stability analysis of a horizontally infinite binary fluid layer subjected 
to a temperature gradient. Their analysis included the possibility of the Soret effect and also 
surface tension driving forces, which could be important in the low-gravity environment. Castillo 
and Velarde” performed a similar analysis in which the case of overstability was also considered. 
Villers and Platten2’ reported some interesting experimental observations of instability in an 
isopropal alcohol and water mixture (9.1 wt.% alcohol), which exhibits a noticeable Soret effect. 
More comprehensive reviews are presented by Schechter et and Platten and C h a ~ e p e y e r . ~ ~  

More recently, the importance of the Dufour effect has become a topic of interest. Ybarra and 
Velarde2’ and Gutkowicz-Krusin et  ~ 1 . ~ ~ 3 ~ ~  have suggested that the Dufour effect could play an 
important role in determining the stability of a binary gas mixture, since for gases KID z 1, so that 
the Soret and Dufour effects act on comparable time scales. (Here K and D are the thermal and 
mass diffusivities respectively.) Ybarra and Velarde studied the linear, steady, horizontally infinite 
fluid layer problem for a binary mixture with Soret and Dufour effects and stress-free top 
boundary conditions. Gutkowicz-Krusin et  al. studied a similar system with either stress-free or 
no-slip top boundary conditions, but considered both steady and oscillatory convection and a 
broader range of parameters than in the preceding work. However, as pointed out by Abernathey 
and Rosenberger,28 the latter study appears to have confused the mass and mole average thermal 
diffusion ratio, which could lead to misinterpretation of their results. 

Recently, the influence of the lateral size of the system on its stability has been investigated 
theoretically for a domain of cylindrical c r o ~ s - s e c t i o n . ~ ~ - ~ ~  These analyses were stimulated by the 
detailed observations of Abernathey and Rosenberger,” who conducted a series of experiments 
to determine the critical Rayleigh number for the onset of convection of a binary mixture heated 
from below in a narrow vertical cylinder with highly conducting walls. These experiments 
considered a variety of bulk concentrations of xenon-helium (Xe-He) and xenon-argon (Xe-Ar) 
mixtures. They found that the sidewall substantially affected the stability of these mixtures. The 
lateral wall was observed to be convectively less stabilizing for the binary systems which they 
considered than for monocomponent systems. Also, concentration effects were relatively more 
destabilizing in the cylindrical geometry with a lateral wall in which the temperature profile 
remained fixed, i.e. a so-called conducting lateral wall, than in the Btnard geometry. Contrary to 
the expectations of Ybarra and Velarde2* and Gutkowicz-Krusin et U Z . , ~ ’  but in apparent 
agreement with Crespo and Velarde,29 Abernathey and Rosenberger determined that the 
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contribution of the Dufour effect to the stability of these systems was quite minor compared 
to that of the Soret effect. They estimated that the error in the critical Rayleigh number (R"a') 
which would result from neglecting the Dufour effect would be a maximum of 5% for the Xe-He 
system and much less for the Xe-Ar system. 

In addition to the array of interesting concentration effects which have been observed in binary 
systems, the cylinder aspect ratio also plays a critical role in affecting flow structure at the onset of 
convection; however, the available experimental data regarding the variation of the cylinder 
aspect ratio focus almost exclusively on monocomponent systems. A variety of different roll cell 
structures have been observed for monocomponent systems near the onset of convection in 
cylinders of moderate radius-to-height ratios (y = RIL).  For example, Mitchell and Q ~ i n n ~ ~  
observed both axisymmetric and non-axisymmetric flows in cylinders with aspect ratios near one 
(y = 1). Similarly, Stork and Miiller3' observed numerous different flow patterns near the onset of 
convection in cylinders with moderate aspect ratios. 

The goal of this study is to provide a detailed analysis of the mechanism of the inception and 
sustenance of flows of binary mixtures (including the limiting case of monocomponent fluids) in 
vertical cylinders, and of observed flow structure at its onset. In particular, the effects of varying 
the aspect ratio of the cylinder and composition of the fluid are considered. This study 
complements that of Crespo and Velarde" by presenting a more quantitative analysis of both 
steady and oscillatory flows, from which additional physical insight can be gleaned. (Oscillatory 
stability and weakly non-linear effects will be discussed in subsequent papers.) 

2. MATHEMATICAL DESCRIPTION 

The system to be studied consists of a layer of non-reactive fluid which fills a vertical, circular 
cylindrical container heated from below. Both monocomponent fluids and binary mixtures are 
considered. Assuming that the temperature and concentration gradients are small, as required by 
the Boussinesq approximation, the diffusive heat and mass fluxes q and j, (mass flux of species 1) 
are given by4 

heat: - q = k V T  + P I  p y l  7D"V W,, 
mass: - j , = p D ' W ,  W , V T + p D V W , ,  

where T and p are the volume-averaged temperature and density respectively; p1 is the volume- 
averaged density of component 1; p y '  is the partial derivative of the chemical potential of 
component 1 with respect to W ,  , its mass fraction; W, and Wz are the volume-averaged mass 
fractions of the two components; k is the thermal conductivity; D is the mass diffusivity; and D" 
and D' are the Dufour and Soret 'diffusion' coefficients respectively. Here component 1 will be 
taken to be the denser component. These forms of the phenomenological transport equations 
directly illustrate the coupling of the Soret and Dufour effects since, from Onsager's reciprocal 

It is convenient to  use the cylindrical co-ordinate system shown in Figure 1 with the 
gravitational field anti-parallel to the z-axis, in the mathematical characterization of the system. 
The entire boundary of the region is assumed to be a rigid, no-slip boundary which is 
impermeable to the fluid but not necessarily to heat. The temperature profile is initially vertical 
and linear (for the conduction state), with temperature TT on the upper boundary and TB on the 
lower boundary; the initial concentration profile is similar, with concentrations W, and W, such 
that Soret diffusion balances ordinary diffusion. Even though the system is closed with respect to 
mass, a gradient in concentration is induced by the Soret effect, which, along with the Dufour 

D' = D". 
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Figure 1. Problem geometry and co-ordinate system 

effect, couples the temperature and concentration fields. These effects can be either stabilizing or 
destabilizing. 

The thermal conductivity (k) ,  the mass diffusivity (D), the Soret and Dufour coefficients (D’ and 
D”), the heat capacity (C,),-the viscosity ( p  and p r l )  are assumed constant and are evaluated at p ,  
Tand W ,  for the conduction state. The density of the fluid ( p )  is assumed to be a linear function 
of temperature and composition. In terms of dimensional variables, the equation of state is 

p = j [ 1 - U ( T  - T )  + p( W1- Wl)], (3) 

where 

are the thermal and solutal expansion coefficients respectively. Making use of the Boussinesq 
a p p r o x i m a t i ~ n ~ * - ~ ~  leads to the following non-dimensional equations for determining the 
dimensionless velocity (u), pressure ( p ) ,  temperature ( T )  and ‘concentration’ ( q ) :  

( 5 )  

(6) 

a U  

a t  
- + u - V u  = - V p  + ( T -  $q)ez + V 2 u ,  

= v2 T + [v2 q -+ &e, - U, 

S: - - + u * V q  = V 2 T + V 2 q ,  (7) 

V * u =  0, (8) 

(2 ) 
where Rs ,  P; and S: are the Rayleigh, Prandtl and Schmidt numbers respectively, $ and [ are 
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parameters related to the Soret and Dufour effects respectively and e, is the vertical unit vector. 
(Note that here and hereafter T represents a dimensionless variable.) The new variable q was 
introduced to simplify the form of the boundary conditions and will be discussed further shortly. 
Here RL, P; and S z  are defined appropriately for a binary mixture as 

where g is the gravitational acceleration, L is the height of the cylinder, AT = TB - TT and 
v = p / p  is the kinematic viscosity. Also 6 ,  a, and P2 are the thermal expansion coefficient, thermal 
diffusivity and mass diffusivity respectively, modified appropriately for the non-dimensionaliz- 
ation used here for a binary system, and are given by 

where ti = k/pCp is the thermal diffusivity and y1 and y2  are modified Dufour and Soret 
coefficients defined by 

1 -  
y ,  = - W ,  pyl  T D ” ,  y2  = W, W2 D’ 

CP 
The dimensionless time t, velocity u, temperature T and pressure p are defined as follows, using a 
superscript ‘d’ to denote the dimensional variables ( q  will be defined shortly): 

The Soret and Dufour parameters JI and [ are defined as 

where 

The parameter S is the so-called ‘Soret separation number’, where kyss is the (mass) thermal 
diffusion ratio used, for example, by de Groot and M a ~ u r . ~  The thermal diffusion ratio is 
proportional to the ratio of the Soret diffusion coefficient to the mass diffusivity and is defined as 

- D’ kFass = W, W2 T--. 
D 

The physical parameters g, 2, p, v, a,, P 2 ,  P,,  a, D ,  ti, y l ,  y2? C, ,  p y l ,  JI, i, S, k y  and F ,  are all 
assumed to be constant and are evaluated at p, W, and T. The values of JI and [ used for the 
Xe-He and Xe-Ar mixtures studied herein can be obtained from tables given in Abernathey and 
Rosenberger.28 The values for other systems are given in the text. Clearly the relationships 
between the various parameters used in the literature are rather involved, but enough information 
is provided here to relate the parameters used in this study to those used in other works. The non- 
dimensionalization was discussed in detail by H a r d i ~ ~ . ~ ~  It is noteworthy that the Rayleigh, 
Prandtl and Schmidt numbers defined above reduce to the standard definitions for mono- 
component fluids when JI and [ are zero. 
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Two separate length scales are used to non-dimensionalize the radial and vertical co-ordinates, 
namely the radius R and height L of the cylinder respectively. This gives 

Zd 
(16) z = -  rd 

R ’  L ’  
- y = -  - 

The appropriate definitions of the differential operators are as follows: 

where s is any scalar, v is any vector and e,, e,, e, are the unit vectors of cylindrical co-ordinate 
system. Note that the use of two length scales in the non-dimensionalization leads to the 
appearance of an aspect ratio y = R / L  in the differential operators, where R and L are the radius 
and height of the cylinder respectively, but conveniently sets the range of the deimensionless 
independent variables to be [0, 11 for r and [ - 4, + J for z in all cases. 

Two different sets of boundary conditions are utilized: 

(21) 

u =  0, T = 0, n - V q  = 0 on O < r < l , z =  ++, (22) 

u = 0, T = 0, n .  Vq = 0 on r = l  > - I - <  2- .z . . .2 .  < L  

and 

u = O , n . V T = O , n . V q = O  on r = l , - t < z < $ ,  (23) 

u = O , T = O , n . V q = O  on O < r <  1 , z =  i-+. (24) 

The first corresponds to so-called thermally conducting boundaries everywhere, while the second 
corresponds to thermally conducting top and bottom boundaries and an insulating lateral 
boundary. (Here conducting implies that the value of the variable is specified (a Dirichlet 
condition), and insulating implies that the derivative of the variable normal to the boundary is 
specified (a Neumann condition).) A new composite variable q whose dimensional form is 

has been introduced to simplify the fomulation by decoupling the boundary conditions. The zero- 
mass-flux boundary condition D n . V  W ,  + W, W, D ‘ n - V T  = 0 becomes n - V q  = 0. Note that the 
dependent variables as defined here are deviations from the quiescent base state in which the 
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temperature and concentration vary linearly with z, such that q is constant, and the pressure is 
hydrostatic. 

Unlike the thermal and mass diffusivities, the Dufour and Soret coefficients D” = D’, to which [ 
and $ are related, may be either positive or negative depending on the specific species chosen as 
component 1, since the mass fraction of species 1 is the chosen concentration variable. Note that 
D‘ for component 2 is the negative of D‘ for component 1. As given in equation (7), the species 
mass balance has been recast in terms of q, but it is a balance equation for component 1. 
Therefore, when D’ is positive, species 1 will tend to move towards the colder region. Conversely, 
when D’ is negative, component 1 will move towards the warmer region. Hence the Soret effect 
will be destabilizing when D’>O with component 1 being the denser component (i.e. the 
component for which /3 > 0, /3 being the solutal expansion coefficient defined previously) and the 
fluid mixture is heated from below. Analogously, when D” > 0, the Dufour effect will yield an 
energy flux towards the region with a lower concentration of component 1. The Dufour effect will 
be destabilizing when D” > 0 if the concentration of species 1 is lower at the bottom of the fluid 
layer. The contribution of the Dufour effect is thus seen to be directly coupled to the Soret effect. 

It should be emphasized that the higher-molecular-weight species is not always the denser 
component. For example, in water-alcohol mixtures, water is typically the denser constituent, 
even though it has the lower molecular weight. Thus if component 1 is the alcohol, one might 
expect the solutal expansion coefficient (B) to be negative since our equation of state is based on 
the local weight fraction of species 1. The sign of /3 enters the non-dimensional stability problem 
through $ because of the dependence of $ on S .  As noted by Schechter et a1.,I3 S represents the 
ratio of the contribution to the density gradient from the Soret effect to that from thermal 
expansion, as seen from 

/3 W, W 2 D ‘  
a D  

S =  

Thus when < 0 and D’ < 0 will 
behave similarly to a system for which /3 > 0 and D‘ > 0, assuming that a has the same sign in 
both cases. (With a as previously defined, usually a > 0.) When heating is from below, the Soret 
effect will tend to destabilize both cases, as expected, since in both cases the denser species will 
preferentially migrate towards the top. 

It is also necessary to clarify the relationship between S,  which has a clear physical interpret- 
ation, and $, which is the particular form of the dimensionless Soret coefficient that arises in the 
governing equations (5)-(8) for the non-dimensionalization used here. When S = - 1, the 
contribution to the density gradient from the Soret effect exactly balances the contribution to 
the density gradient from the temperature gradient. As seen from the definition of $, the limit of 
$ + - 00 corresponds to S + - 1 from above, i.e. from greater S .  The case of S + - 1 from 
below corresponds to positive $. While this may seem paradoxical at first glance, recall that 

changes sign, so does S .  Consequently, a system for which 

9 &ELI ( l + -  2) = a ( l + S ) .  
- gL3i iAT 

Ra z 
Val 

If S < - 1, then u < 0, and R i  is thus negative for heating from below and positive for heating from 
above, assuming, as is probable, that a > 0. As S + - 1, so that V p  + 0, then Cr + 0, so that in 
order to drive convection, 1 AT1 + a, as expected. Thus the entire parameter range of S is 
appropriately described, although the relationship between S and $ is not intuitive. Furthermore, 
fluids with a < 0 are also represented as long as the linear dependence of p on T is appropriate. 
Finally, a somewhat ambiguous statement by Gutkowicz-Krusin et aLZ6 relating to the physical 
meaning of $ is brought to the reader’s attention. These authors stated that “ . . . $ = /3a2/Crf12 is 
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positive for the ‘normal’ Soret effect . . . ” having previously stated that “ . . . the ‘normal’ Soret 
effect occurs when the concentration of the component of higher molecular weight is higher in the 
colder region”. However, for the higher-molecular-weight component to prefer the colder region, 
it is only necessary that y2 > 0 (i.e. D’ > 0) for that component, which does not necessarily make Ic/ 
positive since either f i  or ii = a( 1 + S )  could be negative. This clarification is important since there 
are many binary fluid mixtures for which /3 < 0 if the equation of state is based on the higher- 
molecular-weight component. (The parameter a2 is defined by 

and will have the same sign as y2  since 0 I y l y z / ~ D  I 1. The inequalities result from Onsager’s 
reciprocal relations and the second law of  thermodynamic^.^ Also recall that y1 and y2 are related 
to D” and D’.) 

3. LINEAR STABILITY PROBLEM 

3.1. Formulation of the problem 

In order to gain some valuable insight into the mechanism of destabilization and point of 
incipient flow in the system, one first considers the associated linear stability problem. Formally, 
it is obtained from equations (SHS) by linearizing them about the quiescent base state and then 
seeking solutions with exponential time dependence: 

u : U(r, z, 8)e‘*, (28) 

T : 0 ( r ,  z, 8)euf ,  (29) 
q : r ( r ,  Z, 8)eur,  

p : P ( r ,  z ,  B)e‘’, 

where 0 = cr + ini, i = J( - I) ,  is a complex amplification factor. In general, U, 0, r and P are 
complex-valbed functions. Substitution into equations (SH8) leads to 

(32) 

(33) 

V2U + (0 - $r)e,  - VP = aU, 

v 2 0  + iv2r + &e, -U= P ~ O ,  

vzo + v2 r = slcor. 
v.u= 0, 

(34) 

(35) 
with either 

U = O , O = O , n - V r = o  on ~=I,-+Izs+, (36) 

U=O,@=O,n.VT=O on O < r < I , z =  +-+, (37) 
or 

U=O,n .V@=O,n .Vr=O on t - =  1, - $ s ~ < + ,  
U = 0,0 = 0, n. vr = 0 on OI~I~,Z= *+. 

(38) 

(39) 
The solutions (U, 0, r, P )  of equations (32H39) separate into two classes, one even and the 

other odd about z = 0 with respect to the temperature, concentration and vertical velocity fields; 
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the radial velocity, azimuthal velocity and pressure have the opposite (odd or even) symmetry.41 
This property will be utilized in the approximate solution of the system by means of Galerkin’s 
method by employing two sets of basis functions with the proper even and odd properties for each 
field. 

3.2. Solution of the linear stability problem: Galerkin’s technique 

Even though the linear stability problem represents a linear mathematical system, an analytical 
solution cannot be obtained by separation of variables because of the no-slip condition at the 
container walls. However, the problem does simplify to a series of uncoupled ‘modal’ solutions in 
the azimuthal co-ordinate, with each solution having an angular dependence derived from e- 
Each mode corresponds to a different value of n, where n represents the number of azimuthal 
dividing planes in the solution, i.e. vertical planes through I = 0 on which the azimuthal velocity 
is zero. This decoupling in the azimuthal co-ordinate has a direct effect on the numerical solution, 
which will be evident shortly. 

Since no analytical solution is available, Galerkin’s method4’ is employed here to generate an 
approximate solution of desired accuracy. This method projects the mathematical problem from 
an appropriate infinite-dimensional function space to a finite-dimensional subspace on which the 
solution of the problem reduces to that of an algebraic eigenvalue problem. Following this 
approach, a finite series representation for each variable (U, P, 0, r) is chosen to be of the general 
form 

or 

and 

U = C Ujko = 1 AjkoOjkO (2D axisymmetric), 
j .  k j ,  k 

where V j k n  and W j k .  or Ojko are the velocity basis functions for 3D and 2D flows respectively and 
@ j k n ,  A j k ,  and n j k n  are the temperature, ‘concentration’ (q) and pressure basis functions 
respectively. The value of n denotes the particular modal solution and hence determines the 
azimuthal symmetry as described at the beginning of this subsection. Note that n = 0 corresponds 
to the axisymmetric case. The velocity is a vector field and hence is expectedly more complex than 
the other, scalar fields; moreover, it is required to be solenoidal, which places additional 
constraints on its form. The form of the basis functions V j k , ,  W j k , ,  o j k o ,  @ j k n ,  A j k n  and n j k n  must 
be specified before these representations can be utilized; according to Galerkin’s method, these 
basis functions are chosen such that the essential boundary conditions are satisfied. Essential 
boundary conditions in a problem such as this are the specification of the velocity, temperature 
and concentration on the boundary plus necessary boundedness properties. The specification of 
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stresses or fluxes amounts to natural boundary conditions and need not be satisfied explicitly. 
Nevertheless, in this analysis these conditions are also satisfied explicitly by the chosen basis 
functions. 

Since the velocity field must be solenoidal, it is clear that U j k n  must be solenoidal. Conse- 
quently, it is convenient to choose V j k n ,  Wjkn and O j k o  to be solenoidal. Since the divergence of 
the curl of any vector is zero, this can be done by expressing these functions in terms of vector 
potentials, specifically 

V j k n  = ( 6 j k n e r ) ?  (45) 

W j k n =  ( c j k n e z ) ?  (46) 

ojkO=V ( $ j & O e O ) .  (47) 
The axisymmetric velocity basis functions are derived from a streamfunction i,bjk0, while the non- 
axisymmetric velocity basis functions are derived from two scalar functions 6jkn and c j k n  in such a 
way that their combination will represent a general three-dimensional solenoidal velocity field. 
The resulting form of the velocity field will be discussed shortly. 

To obtain the solution using a minimal number of orthogonal basis functions for each variable 
requires judicious regard of the geometry of the problem. The radial behaviour of the basis 
functions should be well suited to the cylindrical sidewall, while the vertical behaviour should 
reflect the flat, parallel upper and lower bounding surfaces. The field representations used in this 
analysis for the axisymmetric case are an augmentation of those used by Charlson and Sani,41.43 
who studied the stability of a monocomponent fluid in a rigid cylindrical geometry heated from 
below, in order to allow the consideration of a binary fluid mixture. For non-axisymmetric 
solutions the chosen field representations are an augmentation of those used by Buell and 
C a t t ~ n , ~ ~  who studied the same problem as Charlson and Sani43 but employed different basis 
functions. The representation (45)447) used herein is supported by the study of Crespo et al.45 
The similarity of the energy and species mass balance equations (33) and (34) suggests that similar 
basis functions be used for these fields. Furthermore, the homogeneous boundary conditions on r 
on the sidewall are identical in form to those for the temperature field in a cylinder with a 
thermally insulating sidewall. Hence the representation for the q-field is conveniently chosen to be 
that used by Charlson and Sani for a cylinder with an insulating sidewall, except that the trial 
function for the q-field must be insulating rather than conducting on the top and bottom of the 
cylinder as well as on the sidewall. Finally, the velocity representations used by Charlson and 
Sani for the axisymmetric case, or by Buell and Catton for the non-axisymmetric case, are 
appropriate without change for this analysis. Thus the field representations used in this study are 
either those of equations (41)444) or equations (40) and (42H44) utilizing the following basis 
functions. 

Velocity 

Axisymmetric case 

where Yk and X j  are the radial ( r )  and vertical ( 2 )  basis functions given by 

Y k ( r )  C J n  + 1 ( I”& I )  + P k  I n  + 1 ( A k  r ) l  9 (49) 

(50) 
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where 1, is the kth root of 

Jn(Ak)ln + 1 - J n  + 1 (lk)zn(lk) == O, 

and 

cosh (pjz) 
cosh(3pj) cos(&pj)’ 

cos ( p j  z )  Xj(Z) = - 

where p j  is the jth root of 

tanh(+pj) + tan($pj)= 0 

for an ‘even’ trial function, or 

sinh (pjz) sin (pjz) 
sinh(+pj) sin()pj)’ 

X j ( Z ) E  -~ 

where p j  is the j-th root of 

(53) 

(54) 

coth($pj) - cot(qpj)= 0 (55)  

for an ‘odd’ trial function. Here a prime (’) denotes differentiation with respect to the independent 
variable r or z. The definitions of Bk, A, and p j  are chosen such that Y,,  Xj, YL and X i  are all zero 
at the boundaries in order to satisfy the conditions of zero velocity at the boundaries. Henceforth, 
for convenience in describing the spatial structure of a particular modal solution (i.e. a solution 
for a particular value of n), the terms ‘even’ and ‘odd’ will be used to describe the symmetry of the 
mode across the horizontal midplane with respect to its temperature, concentration and vertical 
velocity. 

Non-axisymmetric case 

(56) 

(57) 

I 
I 

n 1  
Y r  

Vjk, = { XJJn+,(6,r)sin(nB)e,--Xj-Jn+,(6,r)cos(n8)e, , 

1 1 
W j k n -  -sin(2jnz)-Rkcos(nB)e, - -R;sin(2jnz)sin(nB)e, i: 2 Y 

for an ‘even’ case, with Xj defined by equations (52) and (53). For an ‘odd’ case X j  will be given by 
equations (54) and (55) ,  and the function sin(2jnz) is replaced by cos [(2j - l)nz]. The radial basis 
function R ,  is defined as 

where o, is the kth root of the equation 

Jn(ok)zn + 1 + ln(ok) Jn + 1 = O. (59) 

Finally, 6, is the kth root of J , +  (6,r) = 0. The definitions of 6, and ok are chosen such that 
J ,  + (6, r), R,  and R; are all zero at the sidewall in order to satisfy the condition of zero velocity 
there. The conditions of zero velocity at the top and bottom of the container are satisfied by the 
vertical basis functions by construction, as for the axisymmetric case. 

Temperature 

@ j k n  = cosC(2j- l)nz]Jn(akr)cos(nO) 
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for an ‘even’ case, or 

@ j k n  = sin ( 2 j x z )  J ,  ( akr)cos(n 0) (61) 

for an ‘odd‘ case. Here ak is the kth root of J ,  for a cylinder with a conducting sidewall in order to 
satisfy the condition of zero temperature perturbation at the sidewall, or the kth root of J ;  for a 
cylinder with an insulating sidewall in order to satisfy the condition of zero radial derivative of the 
temperature at the sidewall. The conditions of zero temperature perturbation at the top and 
bottom of the cylinder are obviously satisfied by construction. 

q-Field 

A j k ,  = cos (2j7cz) J ,  (a: r )  cos ( n  0)  

A j k ,  = sin [ ( 2 j  - 1)7cz] J ,  (a: r )  cos(n 0)  

(62) 

(63) 
for an ‘odd’ case. Here a: is the kth root of JL so that the condition of zero mass flux through the 
sidewall is satisfied. The impermeability of the top and bottom of the cylinder is obviously 
satisfied by construction. 

It is noteworthy that the pressure representation is not specified, since the pressure is 
conveniently eliminated from the Galerkin formulation via constraints imposed on the basis 
function by the continuity equation, and hence no specific representation is required. With the 
field representations thus specified, the Galerkin formulation of the problem can now be 
developed. 

Galerkin’s technique can now be formally applied to generate the finite-dimensional approxi- 
mation alluded to earlier in this subsection by requiring the projection of the residual function 
associated with each balance equation (32H35) to be orthogonal to each of the appropriate basis 
functions. In the present case it is appropriate to use an L,  inner product to define the projection. 

for an ‘even’ case (starting with j = 0), or 

n 

That is, (f, g )  = f - g d o ,  where !2 is the domain of interest and is the complex conjugate of b- 
the function f. The obvious scalar equivalent is denoted by the same ( , ) notation for simplicity. 
Thus, for the axisymmetric case ( n  = 0), 

while for a non-axisymmetric case ( n  # 0), 
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1 { - asz(Arsn? l - j k n )  + < V 2 @ j k n  ) + v2 l - j k n  >} = O. (70) 
j, k 

Here r and s are particular values o f j  and k respectively. Equations (64H70) must be satisfied for 
all possible values of r and s. The indicated summations are performed with j and k varying 
according to the number of basis functions in each field representation. Equations (67H70) hold 
for n = 1,2,3, . . . . The particular value of n determines the azimuthal symmetry of the solution. 

Recall the complex amplification factor (T = or + ia, introduced in Section 3.1. A marginal state 
is one for which (T, = 0. A stationary instability is one for which oi = 0, and an oscillatory 
instability is one for which oi # 0. Here the mathematical framework needed to study both types 
of instabilities will be formulated; while it is well known that oscillatory instabilities do not occur 
in the classical Bknard problem for this geometry,46 such instabilities are possible when the Soret 
effect is i n t r ~ d u c e d . ~ ~  Nonetheless, oscillatory instabilities are not the focus of Part I of this study. 
Herein, the critical value of the Rayleigh number is defined to be the lowest value of the Rayleigh 
number for the occurrence of a marginal instability in the system, i.e. the minimum value of 
RLn over all n, where R& is the minimum eigenvalue of the solution for each n over all j and k .  
Physically, the moment any perturbation can convert a sufficient amount of potential energy into 
kinetic energy to overcome the viscous forces and the stabilizing influence of conduction, the 
system will become unstable and, according to linear stability theory, a convective flow will ensue. 

The pressure can now be eliminated from equation (64) by using the solenoidal property of the 
velocity basis functions O j k O  coupled with the no-slip boundary condition. Using the divergence 
theorem, 

where d V denotes the boundary of V, i.e. the walls of the cylinder. Thus, since V -  Orso = 0 and 
OrsO vanishes on a V, it follows that 

O,,o.VPjkod V= 0 ,  (72) R 
and the final form of equation (64) is 

1 { - ( ~ < O r s o ,  U j k O )  + (orsO,VZUjkO) + ( o , , o , ( ~ j k o e , ) ) - $ ( O , , o , ~ ~ j ~ o e , ) > } =  0.  
j, k 

(73) 

Equations (67) and (68) can be treated analogously since Vjkn and Wjkn are also solenoidal and 
vanish on d V. 

Employing the series representations given in equations (41H43) with the basis functions 
specified in equations (48H55) and (60H3), equations (65), (66) and (73) for the axisymmetric case 
can be recast into the following forms respectively: 
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Similarly, for the non-axisymmetric case, employing the series representations given in equations 
(40), (42) and (43) with the basis functions specified in equations (52) - (63), equations (67)-(70) can 
be recast into the following forms respectively: 

I 1 { - q r j s k B j k  - ( a s c o r j s k  + Y r j s k ) C j k } =  O' (80) 
j ,  k 

Here again rand s represent specific values ofj and k respectively. For convenience, the subscripts 
denoting the specific mode have been dropped. These equations must hold for all possible values 
of r and s. The A j k ,  D j k ,  Bjk and Cjk are the unknown coefficients in the field representations given 
by equations (41)-(43) or equations (40), (42) and (43); the Ajk and Djk belong to the velocity 
representation, and the Bjk and C j k  belong to the temperature and q representations respectively. 
The lower-case letters (arjsk, b r j s k ,  etc.) are known coefficients resulting from evaluation of the 
integrals in equations (65), (66) and (73) or equations (673-(70), either exactly or using a numerical 
quadrature with error control. 

3.3. The matrix eigenvalue problem 

It is convenient to recast the system of equations (74)-(76) (77H80) in matrix form. To effect 
this matrix representation, each set of coefficients Ajk,  Djk ,  Bjk and Cjk is defined as a vector; for 
example, 

A = [ A j k ]  

The (r, s) pairs are then used to denote a second index yielding matrices for the lower-case 
coefficients, i.e. 

a 2 1 1 1  

u1211 a1311 '.' a 1 1 1 2  a 1 2 1 2  ... 
a221 1 a231 1 .'. a 2 1 1 2  a 2 2 1 2  ... 
a3211 a 3 3 1 1  "' a 3 1 1 2  a 3 2 1 2  "' 

a1221 a 1 3 2 1  "' 

a2221 a 2 3 2 1  ' * '  
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and similarly for the other arrays appearing in equations (74x76)  or (77H80). The matrix forms 
of equations (74x76)  are respectively 

(om + a)A = eB - $hC, (83) 

(84) 

(85) 

(a& + g)B= R&,eTA + cpC, 

( C J S ~ O  + y)C = - qB, 

where a superscript T denotes a transpose. For the non-axisymmetric case, the matrix forms of 
equations (77H80) respectively 

(am + a)A + (01 + b)D = eB - $hC, 

(CJX + c)A + (OZ + d)D = 0, 
(86) 

(87) 

(88) ( aPh  + g)B= 5pC + R&,eTA, 

( o S ~ O  + y)C= -qB.  (89) 
The second momentum equation has an abbreviated form because Wjkn has no vertical com- 
ponent, a property which also accounts for the lack of a companion term to eTA in the 
energy equation. 

Considering the marginal oscillatory state, in which or = 0 but ai # 0, it is convenient to recast 
equations (83H85) into the following partitioned matrix eigenvalue problem for the axisymmetric 
case: 

0 

0 - 4  - Y  
(90) 

LX = UMX, (91) 

or 

which is the standard form for a general eigenvalue problem. Analogously, for the non- 
axisymmetric case it is convenient to recast equations (86H89) into the corresponding parti- 
tioned matrix form: 

or 

LX = aMx, (93) 
with L, M and x redefined appropriately as implied. The marginal stability problem then becomes 
one of finding those parameter space configurations, i.e. configurations of (RG, $, c, P;, Sz ,  ai), 
for which simultaneously or = 0 and RG is the minimum of RGn over all n for a specified value of 
gamma. This search requires an iteration process in order to determine the marginally stable 
surfaces in the six-dimensional parameter space. The special case of a marginal stationary 
disturbance, i.e. ui = 0, can be simplified. For the axisymmetric case, equation (85) is solved for C 
and equation(83) for A, and these are substituted into equation(84) to obtain a smaller 
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eigenvalue problem explicitly for RG,: 

{ (g+[py- 'q ) - ' eTa- ' ( e++hy- 'q ) }B= (94) 

Analogously for the non-axisymmetric case, equation (87) is solved for D and equation (89) for C, 
and these are substituted into equation (86), which is solved for A to yield 

A = (a - bd-'c)-'(e + +hy-'q)B. 

This is then substituted into equation (88) to yield 

{(g + [py-'q)-leT(a-bd-'c)-'(e++hy-'q)}B = -- B. (la 
(95) 

In either case, the solution then yields the minimal value of RL,, i.e. the critical value for mode n, 
directly. The minimum value of R;?, over all n is the critical Rayleigh number for the onset of 
convection. 

Before proceeding to the actual solution of equation (90) or (94) and equation (92) or (96), it is 
useful to investigate the limiting case of a pure (i.e. monocomponent) fluid system. For the 
axisymmetric case it is easily verified that, as expected, if the values of the new physical 
parameters $ and [ are set to zero along with ni,  the eigenvalue problem for the pure fluid system 
studied by Charlson and Sani4' is regenerated. For + = 0 and [ = 0, equation (94) simplifies to 

(g- 'eTa- 'e )B = (&)B. (97) 

As shown there, since g is a diagonal matrix and a is symmetric, the substitution B = g1/2 B leads 
to a symmetric eigenvalue problem which simplifies the numerical computation. Similarly, 
performing an analogous manipulation for the non-axisymmetric case, the eigenvalue problem 
for the pure fluid system studied by Buell and C a t t ~ n ~ ~  is regenerated. It is noteworthy that for 
$ = 0 and [ = 0, equation (96) simplifies to 

f(g-'eT(a-bd-'c)-'e))B = - B, 
(:a") 

which can be transformed to a symmetric form. Substituting for B from equation (95), equa- 
tion (98) can be rewritten to yield the matrix eigenvalue problem solved by Buell and Catton. For 
the binary case the eigenvalue problem is no longer symmetric, and there are the additional 
parameters S i ,  $, and [. 

The solution of the eigenvalue problem was generated numerically. The numbers of basis 
functions used in the approximate solutions given by equations (40H43) are as follows: for 
axisymmetric solutions, ten radial and four vertical functions were used for each field, resulting in 
a 40-term series for each field for each mode; for non-axisymmetric solutions, ten radial and six 
vertical functions were used, resulting in a 120-term series for the velocity field and a 60-term 
series for 0 and r for each mode. These specifications resulted in estimated relative errors in the 
computed Rayleigh numbers of order for 
monocomponent fluids. These estimates were made by varying the number of basis functions in 
order to study the convergence of the series representation of the field variables. This was 
supplemented in the monocomponent case by lower-bound estimates due to Charlson and 
Sani.43 Unfortunately, in the case of eigenvectors, no quantitative error estimates could be 
obtained, but comparison with recent independent numerical simulations suggests that the 

or less for binary fluid mixtures, and of order 
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eigenvectors are also accurate. In all cases considered it was found that the critical Rayleigh 
numbers for the ‘odd’ solutions for a given mode ( n )  were significantly larger than those for the 
‘even’ solutions. Consequently, for all of the linear stability results which follow it is implied that 
R i ,  is the minimum eigenvalue of the matrix problem for the even solution for that mode n. This 
appears to agree with observation, i.e. convection always sets in with one recirculation cell in the 
vertical, regardless of the cylinder aspect ratio. 

0 .  v I 1 

4. LINEAR STABILITY RESULTS 

4.1. A comparison with experiments and other theories 

A primary purpose of this work is to explore how varying the concentration of a binary mixture 
affects the onset of convection. As discussed previously, the addition of a second component 
introduces the Soret and Dufour effects as additional driving forces for mass and heat transfer 
respectivley, thus affecting the stability of the mixture. Abernathey and Rosenberger2* exper- 
imentally observed the onset of convection in mixtures of xenon and helium (Xe-He) and xenon 
and argon (Xe-Ar) at various concentrations in a vertical right circular cylinder with highly 
conducting, thick copper walls. The aspect ratio of the cylinder was y = 1/6, and it was heated 
from below. Their results are shown in Figures 2 and 3 along with the theoretical values 
generated in the present study, those of Crespo and Velarde2’ and those of Hardin33 and 
Henry.31 The results from the past two works are virtually identical; both studies used an 
accurate Galerkin scheme with the same trial functions which were the velocity trial functions 
used by Charlson and and essentially the same temperature and concentration (q) trial 

250 

200 

150 

100 

50 

Figure 2. Marginal stability for Xe-He mixtures for y = 1/6 
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Figure 3. Marginal stability for Xe-Ar mixtures for y = 1/6 

functions used in the present study. In all cases the critical mode was found to be n = 1 with one 
vertical roll similar to the structure shown in Figure 14 except with one radial roll. These 
particular fluid pairs were chosen because for them $ and q can be computed fairly accurately 
using molecular theory, thus avoiding the difficulty of finding reliable experimental values. 
Consequently, when comparing the experimental and theoretical results it should be noted that 
the values of the Soret and Dufour parameters $ and q used in the numerical computations were 
calculated from collision theory for ideal monoatomic gas mixtures.28 

The critical Rayleigh numbers computed by Crespo and Velarde using a one-term Galerkin 
trial function are substantially too high. The probable reason for this is that their one-term trial 
function is not sufficient to accurately resolve the physics in a small-aspect-ratio cylinder, where 
sidewall effects are important. The much more accurate multiple-term Galerkin schemes of 
H a ~ - d i n ~ ~  and Henry31 are in very good agreement with, but slightly above, the experimental 
observations. The results of the present work appear to be slightly better still. (For this problem it 
is expected that the numerical results will approach the true threshold from above as the 
approximation is improved. This behaviour has been proven for the monocomponent case.46) In 
contrast, in a physical experiment approximating perfectly conducting walls, any non-idealities in 
the boundary conditions would lead to a lower critical Rayleigh number since the density 
gradient would not necessarily be strictly antiparallel to the gravitational vector, which is a 
necessary condition in order for a hydrostatic base state to exist. Moreover, Buell and C a t t ~ n ~ ~  
showed, at least in the monocomponent case, that as the conductivity of the wall is decreased, the 
stability threshold is decreased. These effects, coupled with the possibility of geometric imperfec- 
tions in the experimental apparatus, point to some difficulties in performing the physical 
experiments, which could be contributing factors to the remaining discrepancies between the 
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experimental and theoretical results. Abernathey and Rosenberger28 reported 9' = 200 5 20 as 
the critical Rayleigh number for the onset of convection in a monocomponent fluid, compared to 
our computed value of P =  233; however, the original result reported by Olson and 
Rosenberger4' for the monocomponent case was 9" = 220 f 12. (Note that for convenience in 
discussing results for cylinders with small aspect ratios, where the values of R"a' are very large, an 
alternative Rayleigh number will be used: 9 = 7"R"a.) 

It is noteworthy that, in general, the predicted stability limit is larger than the experimental one 
by more than the estimate of error in the theoretical values. Since the values of physical properties 
which were used were those utilized by Abernathy and Rosenberger,** we believe that the 
disparity in values is possibly due to experimental problems such as heat loss and/or inclination of 
the cylinder, which could cause a feeble precursor flow, thus complicating the determination of the 
point of onset of convection. 

4.2. The effect of varying the concentration 

The general shapes of the marginal stability curves of 5' (or Rz1") versus concentration for 
mixtures of Xe-He and Xe-Ar remain consistent as a function of aspect ratio. Also, although the 
actual critical Rayleigh numbers are found to be somewhat less for these mixtues contained in a 
cylinder with an insulating sidewall compared to one with a conducting sidewall, the same general 
shapes are found for the marginal stability curves. Even the results for a horizontally infinite layer 
show a similar variation with composition, as can be seen from Figure 4. In this figure the various 
theoretical curves are all normalized to give the experimental value 9' = 200 at X, ,  = 0. (Here 
X, ,  represents the volume-averaged mole fraction of xenon in the mixture.) It is noteworthy that 
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Figure 4. Normalized marginal stability curves for Xe-He for y = 1/6 
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while the results of Crespo and Velarde" underestimate the destabilization afforded by the Soret 
and Dufour effects, the present study appears to agree well with experimental observations. 

As the aspect ratio is increased, so that we are considering shorter, fatter cylinders, the 
stabilizing influence of the sidewall is diminished, so that the entire stability threshold occurs at 
lower values of R"a". This feature is illustrated in Tables I and 11, where the critical Rayleigh 
number is listed at a series of aspect ratios for a monocomponent system, an Xe-He mixture with 

Table I. Critical Rayleigh number as a function of aspect ratio for a conducting sidewall 

Xe-Ar Xe-He 
Monocomponent (XXe = 0.2) (XXe = 0.05) Y 

0.05 
0.1 
1 16 
0.3 
0.4 
0 5  
0.75 
1 
1.5 
2 
2.5 
3 
3.5 
4 

3.471 x lo7 
2.213 x lo6 
3.020 x lo5 
3.525 x lo4 
1.427 x lo4 

8012 
3972 
2545 
2010 
1883 
1810 
1783 
1759 
1749 

2.929 x lo7 (1, 1) 
1.872 x lo6 (1, 1) 
2.563 x lo5 (1, 1) 
3.013 x lo4 (1, 1) 
1.224 x lo4 (1, 1) 

6888 (191) 
3452 (1, 1) 
2330 (0,2) 
1809 (09 2) 
1703 (43 )  
1642 (075) 
1620 (195) 
1598 (096) 
1591 (098) 

* A new roll has begun to grow but its extent is so small it has not been counted. 

Table XI. Critical Rayleigh number as a function of aspect ratio for an insulating sidewall 

Xe-Ar Xe-He 
Y Monocomponent (X , ,  = 0.2) ( X x e  = 005) 

0.05 
0.1 
116 
0.3 
0.4 
0.5 
0.75 
1 
1 3 
2 
2.5 
3 
3.5 
4 

5.661 x lo6 
3.662 x lo5 
5.149 x lo4 

6506 
2798 
1661 
931.8 
793.9 
70 1 .O 
662.6 
660.6 
656.5 
650.5 
651.6 
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a xenon mole fraction of X, ,  = 0.05, and an Xe-Ar mixture with a xenon mole fraction of 
X, ,  = 0.2, for a cylinder with a conducting or insulating sidewall. These xenon mole fractions 
represent the mole fractions at which I(/ is approximately a maximum for these fluid pairs. 

The integers in parentheses in Tables I-IV characterize the spatial structure of the critical 
mode: the first integer characterizes the azimuthal roll structure while the second characterizes 
the radial structure. Specifically, the ‘radial’ structure is given as the number of closed rolls 
counted across the diameter on a vertical plane through the centre of the cylinder. For an 
axisymmetric flow, ‘two rolls’ correspond to one toroidal roll cell. In all cases the vertical 
structure is unicellualr. 

The convective destabilization afforded by the Soret effect is much greater for the Xe-He 
system than for the Xe-Ar system. This is to be expected because of the much greater molecular 
weight difference between the two constituents in the Xe-He system.28 Xenon has a positive 
thermal diffusion coefficient ( D ‘ )  in both systems. Consequently, xenon preferentially moves 
toward the top, i.e. the cold end, in these systems. Since xenon is the heavier species of both fluid 
pairs, this migration reinforces the unstable density stratification resulting from the imposed 
temperature gradient. However, since the molecular weight ratio is 32.8 for the Xe-He system 
compared to 3.28 for the Xe-Ar system, the relative density stratification due to the Soret effect 
will be correspondingly greater for the Xe-He system. 

4.3. The contribution from the Dufour effect 

The convective destabilization afforded by the Dufour effect can also be much greater for the 
Xe-He system than for the Xe-Ar system, which illustrates the coupling of the Soret and Dufour 
effects according to the thermodynamics of irreversible processes, as expressed in the Onsager 
reciprocal  relation^.^ (Recall that the Soret effect is also called thermal diffusion, while the Dufour 
effect is also called the diffusion-thermo effect.) Corresponding to their difference in molecular 
weight ratios, the magnitudes of both I(/ and [, the dimensionless Soret and Dufour parameters, 
are an order of magnitude greater for the Xe-He system than for the Xe-Ar system. However, 
while the relatively greater destabilization due to the Dufour effect in the Xe-He system generally 
parallels the relatively greater Soret contribution in this system, for both systems the Dufour 
effect is seen from Tables I11 and IV to play only a minor role compared to the Soret effect, 

Table 111. A comparison of critical Rayleigh numbers calculated with and without the Dufour effect contribution; Xe-He 
system; conducting sidewall 

y = 116 y = l  y=4* 

x x e  With Without With Without With Without 

0 
0.01 
0.025 
0.05 
0.1 
0.2 
0.4 
0.6 
0.8 

3.020~ lo5 (1, 1) 
1.133 x lo5 (1, 1) 

8.018 x lo4 (1, 1) 
8.703 x lo4 (1, 1) 
1.138 x lo5 (1, 1 )  
1.836 x lo5 (1, 1) 

2.834 x lo5 (1, 1) 

8.298 x 104 (i,i) 

2.441 x 105 (i,i) 

3.020 x lo5 (1, 1) 
1.134 x lo5 (1, 1) 
8.303 x lo4 (1, 1) 
8.015 x lo4 (1, 1) 
8.690 x lo4 (1, 1) 
1.140 x lo5 (1, 1) 
1.858 x lo5 (1, 1) 
2.483 x lo5 (1, 1) 
2.867 x lo5 (1, 1) 

2545 (0,2) 
1243 (1, 1) 
903.7 (1, 1) 
872.5 (1, 1) 
950.0 (1, 1) 
1249 (1, 1) 
1886 (0,2) 

2445 (0,2) 
2240 (0,2) 

2545 (0,2) 
1244 (1, 1) 
903.6 (1, 1) 
871.3 (1, 1) 
947.2 (1, 1) 
1250 (1, 1) 
1938 (0,2) 
2294 (0,2) 
2478 (0,2) 

1749 (0,8) 
885.9 (0,6) 
673.2 (0,4) 
6515 (0,4) 
701.0 (0,4) 
880.4 (0,6) 
1264 (0,8) 
1528 (0,8) 
1678 (0,8) 

1749 (0,8) 
888.0 (0,6) 
674.6 (44) 
652.5 (44) 
703.6 (0,4) 
891.3 (0,6) 
1295 (0,8) 
1563 (0,8) 
1700 (0, 8) 

* In the y = 4 case the spatial structure assessment is less precise because of the larger number of radial rolls. 
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Table IV. A comparison of critical Rayleigh numbers calculated with and without the Dufour effect contribution; Xe-Ar 
system; conducting sidewall 

y = 116 y = l  y = 4 *  

xx, With Without With Without With Without 

0 3.020 x lo5 (1, 1) 3.020 x lo5 (1, 1) 2545 (0,2) 2545 (0,2) 1749 (0,8) 1749 (0,8) 
0.1 2.633 x lo5 (1, 1) 2.639 x lo5 (1, 1) 2366 (0,2) 2371 (0, 2) 1617 (0,8) 1620 (0, 8) 
0.2 2.563 x lo5 (1, 1) 2.572~ lo5 (1, 1) 2330 (0,2) 2338 (0, 2) 1591 (0,8) 1596 (0, 8) 
0.3 2.585 x lo5 (1, 1) 2.594 x lo5 (1, 1) 2340 (0,2) 2350 (0, 2) 1598 (0, 8) 1605 (0, 8) 
0.4 2 .643~  lo5 (1, 1) 2 .652~  lo5 (1, 1) 2368 (0,2) 2378 (0,2) 1619 (0,s) 1626 (0, 8) 
0.6 2.786 x lo5 (1, 1) 2.794 x lo5 (1, 1) 2437 (0,2) 2444 (0,2) 1670 (0,8) 1675 (0, 8) 
0.8 2.919 x lo5 (1, 1) 2.924 x lo5 (1, 1) 2498 (0,2) 2503 (0,2) 1716 (0, 8) 1719 (0, 8) 

* In the Y = 4 case the spatial structure assessment is less precise because of the larger number of radial rolls 

resulting in a maximum destabilization of about 3% for the Xe-He system and about 0.5% for 
the Xe-Ar system. The relatively minor importance of the Dufour effect in these fluid systems is in 
apparent agreement with Crespo and Velarde,29 but is somewhat contrary to the expectations of 
Ybarra and VelardeZ5 and Gutkowicz-Krusin et al.,26,27 who suggested that the Dufour effect 
should be important in gaseous systems, where KID is approximately unity, such that the Soret 
and Dufour effects operate on comparable time scales. 

There is one surprising feature of Table 111. For the Xe-He system at xenon mole fractions of 
0.01 < X,,  < 0.2 for y = 1/6 and y = 1, the Dufour effect is stabilizing. In these cases the flow is 
antisymmetric (n  = 1); this was not observed in this concentration range at y = 4 where the flow is 
axisymmetric. Also, isolated results suggest that this only occurs when the cylinder sidewall is 
conducting. Evidently this slight stabilization is the result of some subtle interaction between the 
fluid and a conducting sidewall. It does not appear to be a numerical artefact, since the relative 
errors in the numbers in Table I11 are of order for the number of trial functions used to 
generate these results. In any case, this effect seems rather insignificant, resulting in a maximum 
stabilization of about 0.5%. In view of its relatively minor role, the contribution of the Dufour 
effect is neglected in the remainder of the calculations presented, unless a specific fluid system 
(i.e. an Xe-He or Xe-Ar mixture) is being described. The primary reason for this is to reduce the 
dimension of the parameter space by one. 

4.4. The efSects of changing the cylinder aspect ratio 

4.4.1. General results for monocomponentjuids. A closer inspection of Tables I and I1 shows 
that for small aspect ratios, the percentage decrease in R;" resulting from the Soret effect is larger 
for the case of cylinder with a conducting sidewall than for one with an insulating sidewall. This 
effect will be discussed more thoroughly for general systems in a subsequent paper. 

While the general trend is for R;' to decrease as y increases, as seen from Tables I and 11, the 
dependence of RG' on y is not a simple one. This is illustrated in several figures. Figures 5 and 6 
show the stability limits of the first four modes for a monocomponent fluid in a cylinder with a 
conducting or insulating sidewall respectively at aspect ratios y I 1.5. Figures 7 and 8 show the 
stability limits of the first four modes for an Xe-He mixture with a xenon mole fraction of 
X , ,  = 0.05 for a cylinder with a conducting or insulating sidewall respectively at aspect ratios 
y I 1.5. 
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Figure 5. Modal stability curves for a monocomponent fluid for y < 1.5 with a conducting sidewall 
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Figure 6. Modal stability curves for a monocomponent fluid for y I 1.5 with an insulating sidewall 
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Figure 7. Modal stability curves for Xe-He, X,, = 0.05, for y 5 1.5 with a conducting sidewall 
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Figure 8. Modal stability curves for Xe-He, X,, = 0.05, for y 1.5 with an insulating sidewall 
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These figures display the critical Rayleigh number for the least stable mode as a function of 
aspect ratio; the critical mode, and consequently the spatial structure of the incipient flow, varies 
over this interval in each figure. In this range of aspect ratios, essentially a single antisymmetric 
(n = 1) roll fills the cylinder for the lower end of the range, while a single axisymmetric (n = 0) 
toroidal roll fills the cylinder at the upper end. The aspect ratio at which the transition between 
the two modes occurs depends on the specific fluid mixture and the boundary conditions. More 
information on this provided in Tables I-IV. 

Figures 9, 10, 11 and 12 respectivley show the stability limits for the first four modes for the 
same four cases as Figures 5, 6, 7 and 8 but for aspect ratios 1 I y I 4. Over this interval the 
critical mode and the corresponding flow structure vary in a complicated fashion, with several 
transitions in the critical mode and corresponding flow structure. For a cylinder with an 
insulating sidewall it can be seen from Figures 10 and 12 that the decrease in R i c  with y is not 
even monotonic. Here again the spatial structure varies along each curve in the figures as 
indicated in Tables I-IV. The situation is further complicated by the rather complex interplay 
between the R i n  for the various modes as a function of y, different modes assuming the role of the 
critical mode over different intervals of y depending on the particular fluid system. This implies 
that the flow structure at the onset of convection is highly dependent on y over the range of y 
shown. The most important roles are played by the n = 0 and n = 1 modes. The stability curves 
for these two modes as a function of y are seen to cross periodically, and usually one or the other 
of these modes is the critical mode. These features have not been previously explained, even for 
the monocomponent case, although for a cylinder with an insulating sidewall Charlson and 
Sani43 noted the approximate concurrence of a change in the critical mode with a change in the 
number of rolls for the axisymmetric mode. Buell and C a t t ~ n ~ ~  noted the rich behaviour of the 

Figure 9. sidewall 
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Figure 10. Modal stability curves for a monocomponent fluid for 1 I y I 4 with an insulating sidewall 
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Figure 11 .  Modal stability curves for Xe-He, X,, = 0.05, for 1 I y I 4 with an insulating sidewall 
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Figure 12. Modal stability curves for Xe-He, X,, = 0.05, for 1 y $4 with an insulating sidewall 

monocomponent stability limits but did not discuss them. These particularities allude to some 
fascinating physics which result from the finite geometry. 

In the mathematical model used herein, a variety of recirculation patterns can occur, each with 
a different azimuthal symmetry corresponding to the value of n, which can be thought of as an 
azimuthal ‘wave number’. For each mod: type, specified by its n-value, the number of roll cells for 
a particular fluid system at the critical Ran for that mode is determined by the aspect ratio (y)  and 
the boundary conditions. Examples of the spatial structures of flows corresponding to the two 
most commonly critical modes (i.e. the n = 0 and n = 1 modes) are illustrated in Figures 13 and 14 
by 3D perspective vector plots of the velocity field for each of these modes at the onset of 
convection for an aspect ratio at which it is the critical mode. Figure 13 shows one axisymmetric 
(n = 0) radial roll cell, or two roll recirculations counted across the diameter, in a cylinder with an 
aspect ratio y = 1. Figure 14 shows one-and-a-half antisymmetric ( n  = 1) radial roll cells, or three 
complete rolls counted across the diameter, in a cylinder with an aspect ratio y = 1-8. Here radial 
rolls means the number of rolls counted across the cylinder from r = 0 to r = 1. For the finite 
geometry, antisymmetric (n = 1)  solutions correspond to an odd number of roll cells across the 
diameter, while axisymmetric ( n  = 0) solutions correspond to an even number of rolls across the 
diameter. Alternation between these two modes as the critical mode when the aspect ratio of the 
cylinder is increased allows the flow structure to adjust to the changing geometry with the least 
amount of distortion to the width-to-depth ratio of an individual recirculation. This alternation 
of the favoured azimuthal symmetry as the aspect ratio of the cylinder is increased causes the 
crossings of the modal stability curves. 

4.4.2. General results for binary fluid mixtures. The focus will now be changed to how the 
composition of a binary system affects the critical Rayleigh number. Figures 15 and 16 show the 
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e = o  
Figure 13. 3D perspective of 1 axisymmetric radial roll in a cylinder with y = 1 

Figure 14. 3D perspective of 1.5 antisymmetric radial rolls in a cylinder with y = 1.8 

0 1 2 I 

Figure 15. Modal stability curves as a function of + for + I 3  with a conducting sidewall 
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Figure 16. Modal stability curves as a function of li, for li, I 3 with an insulating sidewall 

modal stability limits as a function of the Soret parameter $ for a cylinder with y = 1.8 and a 
conducting or insulating sidewall respectively. (Note that these curves were computed with 5 = 0.) 
RZn decreases rapidly for each mode as IC/ increases. In comparing the effect of $ on RG, with the 
effect of y, the reader should be aware that the scale of the ordinate is greatly expanded in these 
figures compared to the scale in Figures 9-1 2, and consequently the modal stability curves appear 
compressed and their fluctuations less dramatic. Nonetheless, the stability curves for the n = 0 
and n = 1 modes as a function of $ clearly cross, as they do as a function of aspect ratio. Recall 
that n = 1 is the critical mode for a monocomponent fluid at this aspect ratio, which corresponds 
here to $ = 0. Then the n = 1 mode remains the critical mode for small $, up to about $ = 0.21 for a 
cylinder with a conducting sidewall or about $ = 0.26 for a cylinder with an insulating sidewall. 
From these limits up to about $ = 1.85 for a cylinder with a conducting sidewall or about 
$ = 2.16 for a cylinder with an insulating sidewall, n = 0 is the critical mode. For values of $ 
greater than these last two limits, the n = 1 mole is always the critical mode regardless of how 
large $ is. 

The crossings of the modal stability curves in Figures 15 and 16 are again controlled by the roll 
structure, but here the roll structure for each mode is modulated by $ rather than y .  As IC/ is 
increased, concentration effects become more important, and the rate at which a fluid parcel can 
equilibrate in density is decreased. This leads to rolls with greater width-to-depth ratios for 
greater $, which affects the modal stability structure. A detailed explanation of the physics 
affecting the aspect ratio of an individual recirculation as a function of $ will be presented in 
Part 11. 

To illustrate the impact the Soret effect can have on the stability of systems in which it plays a 
very strong role, Figure 17 displays R&, as a function of $ over several orders of magnitude of II/ 
for several different aspect ratios. Figure 18 shows the comparable results for RLl as a function 
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Figure 18. Stability curves for n = 1 for lo-'< I$ I lo2 
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of +. The modal stability limits for both sets of boundary conditions (i.e. a cylinder with a 
conducting sidewall and also one with an insulating sidewall) are plotted together on each figure, 
using the same line-style for both cases for a given aspect ratio. For the cases shown, 
these correspond to the upper and lower limits of R;,, for all wall conductivities at  each value of y 
plotted for 5 = 0 (i.e. neglecting the Dufour effect). The lower-magnitude Rayleigh numbers 
always occur for the insulating sidewall case. Note that much of the structure of the modal 
stability curves is lost on the log scale, but the magnitude of the Soret contibution is illustrated. All 
of the remaining figures will be similar in that they will show stability limits for both sets of 
boundary conditions plotted together. The Soret effect plays a major role in lowering the stability 
of systems with large +, lowering RG, by orders of magnitude. Values of $ of order 10 or even 100 
are not unusual. In the limit of large $ it is found that with [ = 0, RG,, +f(y)/+ as II/ -+ 0 0 . ~ ’  The 
functionf(y) varies relatively slowly with y; for example, f(l.8) % 810, compared to the result 
found by Gutkowicz-Krusin et a!.” for a horizontally infinite fluid layer, namely f ( y )  .+ 720 
for y -+ 00. 

In order to give a more complete sense of the stability limits of binary mixtures as a function of +, Figure 19 displays R& as a function of + over the range - 1.5 I t j  5 1.5 for both the 
conducting and insulating sidewall cases, and Figure 20 shows the analogous results for R i l .  The 
most interesting feature of these figures is the appearance of a second, negative Rayleigh number 
branch. This branch will be discussed shortly, but first we consider the more intuitive, positive 
Rayleigh number branch. For negative + we again see that the Soret effect plays a major role 
in determining the stationary stability limit, although here it tends to increase R;, by driving the 
denser species preferentially towards the warmer, bottom boundary. Recall that as II/ -+ - co, 
S + - 1 from above. Thus as + gets increasingly negative for c1> 0, the increasing contribution 

$) 
Figure 19. Stability curves for n = 0 for - 1.5 2 + s 1.5 showing both branches 
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Figure 20. Stability curves for n = 1 for - 1.5 5 $ 5 1.5 showing both branches 

from the Soret effect tends to destroy the density gradient resulting from the thermal contribu- 
tion. Accordingly, Figures 19 and 20 suggest that R:" -+ 00 as t+b -+ - a3 for heating from below. 
There is no physical reason why RGc should tend to infinity as t+b -+ - 1 ,  as found by Gutkowicz- 
Krusin et a/.,27 or as S -+ - 0.01, as found by Schechter et a/.'3 No such behaviour was found 
here. However, for t+b < 0 (and CI > 0) with heating from below, unless the magnitude of t+b is small, 
the onset of convection usually occurs as an oscillatory instability which is driven by the opposing 
contributions to the density field from the temperature and concentration fields and the differing 
relaxation times for these two contributions. 

A fascinating but unintuitive result is that fluid systems with t+b < 0 become unstable to 
stationary disturbances when heated from above, because when t+b < 0 the Soret effect tends to 
drive the denser component towards the warmer region of the container for 01 > 0. (For a <  0 the 
fluid will again have an adverse density profile, which will tend to cause instability in the obvious 
way.) Thus for t+b < 0 (with CI > 0) there is a second solution branch which is characterized here by 
negative values of the Rayleigh number, since AT for this case is of the opposite sign to that used 
in the definition of the Rayleigh number. This unexpected phenomenon of systems that are 
unstable when heated from above has resulted in the determination of erroneous Soret para- 
meters for certain liquid systems. Noting that I) < 0 corresponds to - 1 < S < 0, so that the 
thermal contribution to the density gradient is dominant, the negative Rayleigh number branch 
01 > 0 and heating from above corresponds to a stationary instability in which the density 
gradient is negative, so that the density decreases from bottom to top. This possibility was first 
analyzed by Schechter et a/.13 for a laterally unbounded system. The mchanism for the instability 
in this case relies on the difference in relaxation times between perturbations in temperature and 
concentration. The ratio of the time scale for conduction to that for ordinary diffusion is inversely 
proportional to KID. For liquids, typically KID % 1, so that the relaxation time for a perturbation 
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in temperature is much shorter than for a perturbation in concentration. For II/ < 0 (and a >  0) 
the denser species tends to migrate preferentially towards the top when heating is from above. 
Consequently, the Soret effect partially mitigates the thermal contribution to the density gradient, 
although the density gradient remains negative. If a parcel of fluid is displaced upwards, it will be 
denser than its surroundings because of its lower temperature, but it will also be leaner in the 
more dense species. If ic/D D 1 it will equilibrate faster in temperature than in concentration. 
Consequently, upon reaching a state near thermal equilibrium, it will be more buoyant than its 
surroundings because of its lower concentration of the denser species, and will tend to continue to 
rise. The opposite tendency will exist for a parcel of fluid displaced downwards. If the rate of 
conversion of the potential energy of a displaced parcel into kinetic energy is faster than the 
dissipation of its potential energy by diffusion and conduction and its kinetic energy by viscous 
forces, a flow will ensue. In contrast, for gas mixtures it is unlikely that J/ will be less than zero. 
Thus even if the Soret and Dufour effects act to increase the separation of the relaxation times for 
perturbations in temperature and concentration, it is unlikely that gaseous mixtures could 
become unstable when heated from above, which seems somewhat contrary to the suggestion of 
Gutkowicz-Krusin et Figures 21 and 22 complete the stationary stability picture by showing 
the negative Rayleigh number branches over a range of negative II/. Figure21 displays Ra,  
for both sidewall boundary conditions, while Figure 22 gives the analogous limits for Ra,  . 

5. CONCLUSIONS 

It is clear from the previous figures displaying various marginal stationary stability limits that the 
stabilizing influence of viscous forces at the sidewall diminishes rapidly as y increases for 

Rao 
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Figure 21. Stability curves for n = 0 for - 10’ I $ - lo-’ with heating from above 
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Figure 22. Stability curves for n = 1 for - lo2 I $ I - with heating from above 

approximately y<2. As y increases beyond about y = 2 ,  the stability limit curves for all of the 
modes asymptotically approach the critical Rayleigh number for a horizontally infinite fluid 
layer, as previously discussed. This reflects the rapidly diminishing fraction of the total boundary 
area contributed by the sidewall as y increases towards approximately y = 2, and the relatively 
slower change after that. The ratio of the area contributed to the boundary by the top and bottom 
of the container together compared to that contributed by the sidewall is precisely y, while the 
fraction of the boundary area contributed by the sidewall is 1/(1 + y). Thus while at y = 1 the 
sidewall represents half of the boundary, at y = 2 the ends donate twice the area of the sidewall, so 
that the fraction of the boundary contributed by the sidewall is only about 33%. A further 
doubling of the aspect ratio from y = 2 to y = 4 represents a decrease in the fraction of the 
boundary contributed by the sidewall of only about 13%,  from approximately 33% to 20%, 
which is a much smaller change in the fraction of the boundary donated by the sidewall for a 
twofold change in y. Thus for aspect ratios less than about y = 2 the viscous forces at the sidewall 
stabilize the system substantially relative to a horizontally infinite fluid layer, while for larger y the 
viscous inhibition of convection via the sidewall is much smaller. Nonetheless, even for larger 
aspect ratios the presence of the sidewall greatly influences the spatial configuration of the flow, 
temperature and concentration fields. At the onset of convection for a given fluid mixture, the 
azimuthal symmetry of the flow is completely determined by the aspect ratio of the cylinder for 
the range of aspect ratios that have been considered in this work, except at the values of y at which 
two modes are critical, i.e. at the crossings of the modal stability curves. (The spatial configur- 
ations of flows for these double-point values of y near the onset of convection can only be 
ascertained by non-linear analysis, which will be the subject of a subsequent paper.) Comparing 
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the results described herein with the results of Rosenblat,4* who solved the monocomponent 
problem allowing the flow solution to violate the no-slip condition at the sidewall, it is clear that 
the no-slip condition must be satisfied in order to predict the correct azimuthal symmetry at the 
onset of convection. 

Finally, the Soret effect has been found to have a potentially major influence on the stability of 
binary fluid systems and can also greatly affect the flow configuration at the onset of convection. 
At larger values of Ic/ the increased Soret effect contribution drives the system towards fewer and 
consequently longer rolls. Ultimately, for a mixture with a sufficiently large value of $, convection 
sets in as one antisymmetric roll which completely fills the cylinder. The results which have been 
presented suggest a multitude of interesting and important phenomena which would be worthy 
subjects for experimental study. 
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APPENDIX: NOMENCLATURE 

A j k n  Or A j k  

a r s j k  2 . . . Y r  j s k  

B j k n  Or B j k  

C j k n  Or c j k  

CP 
D 

D' 
D" 

D j k n  Or D j k  

E j k n  

e r ,  eb'9 ez 

F D  
f and 1 
g 
9 
g 
I n  

1 

J" 

jl 
k 
kP,, 
L 
n 
n 

coefficients in the velocity field representation 
coefficients resulting from evaluation of Galerkin integrals 
coefficients in the temperature field representation 
coefficients in the q-field representation 
specific heat at constant pressure 
mass diffusivity 
coefficients in non-axisymmetric velocity field representation 
Soret coefficient 
Dufour coefficient 
coefficients in the pressure field representation 
cylindrical unit vectors 
Dufour parameter 
arbitrary function and complex conjugate (Section 3.2 only) 
arbitrary function (Section 3.2. only) 
magnitude of gravitational acceleration 
gravitational acceleration 
nth-order Bessel function of the second kind 

nth-order Bessel function of the first kind 
mass flux of species 1 
thermal conductivity 
mass thermal diffusion ratio 
height of cylinder 
azimuthal wave number (mode number) 
unit normal vector 

J c -  1) 
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O j k n  

P 
P 

Q 
R 
Ra 

93 and d 

r 
S 
s- 
sc  
T 
TB 
TT 

P; 

RL 

4 

A T  
T 
t 
U 
U 
V 

- 

V 

V j k n  

Wl 
Wl 
% k n  

Xj 
x x e  
yk 

z 

Greek symbols 

c1 

tl 
- 

a1 
012 

B 
B z  
Y 
Y1 

Yz 
i 
v 
0 
8 

axisymmetric velocity basis function 
pressure 
spatial dependence of p in the linear stability problem 
modified Prandtl number 
heat flux 
radius of cylinder 
Rayleigh number (for a monocomponent fluid) 
modified Rayleigh number (for a binary fluid) 
Rayleigh numbers based on the cylinder radius 
normalized value of 8 
radial co-ordinate 
Soret separation number 
generic scalar 
modified Schmidt number 
temprature 
temperature of cylinder bottom 
temperature of cylinder top 

volume-averaged temperture 
time 
velocity 
spatial dependence of u in the linear stability problem 
volume of cylinder 
generic vector 
non-axisymmetric velocity basis function 
mass fraction of species 1 
volume-averaged weight fraction of species 1 
non-axisymmetric velocity basis function 
z basis function for the velocity field 
mole fraction of xenon 
radial velocity basis function 
vertical co-ordinate 

TB - TT 

thermal expansion coefficient 
modified thermal expansion coefficient (binary fluid) 
modified thermal diffusivity (binary fluid) 

solutal expansion coefficient 
modified mass diffusivity (binary fluid) 
cylinder aspect ratio (7 = R / L )  
Dufour coefficient 
Soret coefficient 
dimensionless Dufour parameter 
transformed concentration variable 
spatial dependence of T in linear stability problem 
azimuthal co-ordinate 

= E l  YzlD 
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K 

l \ j k n  

P? 

V 

njkn 

P 
a 
@ j k n  * 
Superscripts 

d 
T 

C 

I 

thermal diffusivity 
r]  basis function 
partial derivative of the chemical potential of species 1 with respect to W ,  , its 
mass fraction 
kinematic viscosity 
pressure basis function 
mass density 
complex amplification factor (a = ar + ia,) 
temperature basis function 
dimensionless Soret parameter 

critical Rayleigh number 
dimensional quantity 
transpose of a matrix 
differentiation with respect to the independent variable, r or z 

Subscripts 

1 property of component one 
2 property of component two 
B 
1 imaginary part 
n corresponds to mode n 
r real part 
T 

evaluated at bottom of cylinder 

evaluated at top of cylinder 

Special symbol 

av boundary of  cylinder 
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